

HV-1612030701020300 Seat No. _____

Master of Pharmacy Management (Sem. II) (CBCS) Examination

June / July - 2017 Pharmaceutical Chemistry - II

(Organic Chemistry - I)

Time: 3 Hours [Total Marks: 80

Instructions: (1) Attempt three questions from each section.

- (2) Questions 1 and 5 are compulsory
- (3) Tie each section separately.
- (4) Figures to the right indicates full marks for the respective question.

SECTION - I

1 Explain the following terms: (Any SEVEN)

14

- (1) Carbene
- (2) Nucleophile
- (3) Aromaticity
- (4) Bond dissociation energy
- (5) Markonikov Rule
- (6) Differentiate bonding molecular orbital and antibonding molecular orbital
- (7) Carbanion
- (8) Dienes
- (9) Ozonolysis
- (10) Saytzeff's rule.
- 2 (1) Give IUPAC name of the following:

- (2) Differentiate S N_1 and S N_2 reaction with suitable example and mechanism.
- 3 (1) Define hybridization. Explain sp³ hybridization 7 with examples.
 - (2) Enumerate various methods for quantitative estimation 6 of nitrogen. Describe any one in detail.
- 4 (1) Explain Chlorination of Methane with mechanism. 7
 - (2) Explain reactions of Amines.

SECTION - II

- 5 Answer the following questions: (Any TWO) 14
 - (1) What are polynuclear aromatic compounds? Describe in detail synthesis for anthracene.
 - (2) Explain Diels-Alder reaction.
 - (3) Explain electrophilic aromatic substitution reaction with suitable examples.

6

6 What are reactive intermediates of carbon? Describe 7 (1) in detail any one of them. (2) Give in detail preparation of alkene. 6 7 (1) Explain reactions of alkynes. 7 (2) Explain: Electronegarivity, homolysis and heterolysis. 6 8 (1) Give an explanation regarding general reaction 7 of alcohols. (2) 0.21 g of an organic substance containing C, H, O and 6 N only, gave on combustion 0.462 g carbon dioxide and 0.1215 g of water. 0.104 g of it when distilled with caustic

soda evolved ammonia which was neutralised by 15 ml

of N/20 H₂SO₄. Calculate empirical formula.

HV-1612030701020300]